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We develop a simple, efficient, and general statistical mechanical technique for calculating the pres-
sure tensor of an atomic fluid. The method is applied to the case of planar Poiseuille flow through a nar-
row slit pore, and the results indicate that our technique is accurate and relatively efficient. A second
method to calculate shear stress is derived from the momentum continuity equation. This mesoscopic
method again is seen to be accurate with low statistical uncertainty. Using both approaches, the viscosi-
ty is calculated as a function of position across the pore, and is seen to oscillate because of a wall-induced
local structure in the fluid. We discuss these methods in relation to the well-known ambiguity of the

pressure tensor.

PACS number(s): 03.40.Gc, 02.50.—r, 51.10.+y, 05.70.Ln

I. INTRODUCTION

In this paper we give an alternative derivation of the
Irving-Kirkwood [1] expression for the pressure tensor.
Our derivation is valid for highly inhomogeneous, non-
equilibrium fluids and avoids the mathematically awk-
ward Taylor series expansion of differences in delta func-
tions that is used in the Irving-Kirkwood [1] (IK) deriva-
tion. Our method also avoids the heuristic notion of the
force “across” a unit area and is instead simply based on
the continuity equations of hydrodynamics. We use our
statistical mechanical expression to study the variation of
the pressure tensor inside narrow slit pores. We also
compare these results with those obtained by a simple in-
tegration of the momentum continuity equation. This
latter method is mesoscopic in the sense that it is not
based on any molecular hypothesis.

The pressure tensor of an atomic fluid P is often
defined as the infinitesimal force dF felt across an
infinitesimal area d A, which moves with the local stream-
ing velocity u(r,?) of the fluid

dF=—dA-P . (1

The pressure tensor can be written as a linear sum of
kinetic, P¥, and potential, P¥, components. In (1), the
kinetic component is deemed to be across the surface d A
if at a time ¢, a particle moves through (or across) the sur-
face. The potential component P¥, due to intermolecular
forces, is, however, not as easily defined. An interatomic
force between two atoms is often said to be “across’ the
surface if the line between the centers of mass of the two
atoms cuts through (or across) the surface defined by dA.
(This is the so-called Irving-Kirkwood convention [1].)
However, there is really no unambiguous definition of
“across” for either the kinetic or the potential contribu-
tions to the pressure tensor. For example, there are obvi-
ous difficulties that arise in handling many-body force
contributions to the potential part of the pressure tensor.
Even for pair forces there is no unique way to determine
exactly which molecular pairs contribute to dF [1-3].

1063-651X/95/52(2)/1627(12)/$06.00 52

Several different techniques have been developed to cal-
culate the potential component of the pressure tensor; for
example, those of Irving and Kirkwood [1] and Harasima
[4].

The ambiguities in both components of the pressure
tensor are perhaps best illustrated by the fact that the
predictions of hydrodynamics are unaltered if we add the
curl of an arbitrary vector field to the pressure tensor. In
hydrodynamics it is only the gradient of the pressure ten-
sor which appears in the equations of motion. Only vari-
ations in stress can cause acceleration of fluid elements.

The Irving-Kirkwood expression for the pressure ten-
sor at time ¢ [1,10] is

P(r,t)=iV S my[vi()—ulr, 01V (D —ulr,,0)]

+33 rij(t)oij(t)Fij(t)|ri(t)=r
ij

In (2), V is the volume of the system, v; is the total parti-

cle velocity, u is the streaming velocity of the fluid, F;; is

the force on atom i due to atom j, and Oy is the

differential operator,
1 d

- 98 . 1 |__ 98
OU ! 2!1',-,' 8r+ +n!( Tij ar

n—1

(3)

In the IK derivation the O;; operator results [1] from an
expansion of the difference of & functions specifying
atomic positions. If one is investigating the properties of
bulk fluids subject to pair interactions, which have a uni-
form density, then the above expression with O;; =1 is ex-
act. We call the full Irving-Kirkwood expression for the
pressure tensor the IK expression. We call the O;;=1 ap-
proximation to the full expression the IK1 expression.
One of the main objectives of this paper is to obtain
some quantitative understanding of the deviation of O;;
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from unity in inhomogeneous fluids close to walls. In
principle, one could calculate the various O;; terms, but
this is neither algebraically simple nor computationally
efficient.

There have been numerous equilibrium calculations of
the pressure tensor in the liquid-gas interface, thereby
enabling a determination of the surface tension of fluids,
e.g., [5-9]. In the case of an equilibrium planar interface
with surface area A, the Irving-Kirkwood definition of
the pressure tensor leads to the following expressions for
the transverse and normal components of P, respectively
[5,7]:

2 2
1 xij+yij 1
P (z)=p(2)kT —— "(r;;)
reme 44 ,% Tij ey e
Z—Z; Z;—2
X® ~ e |- ,
Zij Zij
(4)
2
Py2)=pkT— =1 | > ZLg(r,)
v P 24 i<j Yij Y |zij'
Z—2Z; zZ:—Z
X® ~ e |- ,
Ziy Zij

where in these planar geometries x and y are parallel to
the surface and z is perpendicular, p(z) is the local densi-
ty at z, #(r;;) is the intermolecular potential, ®(x) is the
Heaviside step function, and r;=r,—r;. Note:
Pr=P,., =P, and Py=P,. However, as they stand
these equations are not valid for a nonequilibrium system.

The motivation for this work was to develop a general
statistical mechanical technique for calculating the pres-
sure tensor in narrow channels, bearing in mind the need
for simplicity, generality, and computational efficiency.
We apply the technique to the specific case of nonequi-
librium planar Poiseuille flow, and show that it is an ac-
curate and simple means by which the pressure tensor
and local viscosity can be calculated. Furthermore, for
this type of flow we develop a mesoscopic method to cal-
culate P,, from a solution to the momentum continuity
equation of hydrodynamics and compare this result with
our statistical mechanical technique. The accuracy and
simplicity of both methods have implications for the case
of fluid flows in microporous materials, and should be of
use to engineers where experimental measurements of
such local viscosities are difficult to perform, and previ-
ous theoretical work has been quite limited.

II. THEORY

A. Statistical mechanical expressions for the pressure tensor

Most derivations of the statistical mechanical form of
the pressure tensor fall into two classes. They either
make use of the machinery of equilibrium statistical
mechanics and employ the thermodynamic relation,
p=—03A4/9V|;, or its equivalent, or they make a direct
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mechanical calculation of the infinitesimal force dF, that
‘“acts across an infinitesimal co-moving area d A,” using
definition (1). For our present purposes the thermo-
dynamic route is inapplicable since we need to be able to
compute the pressure tensor away from equilibrium. The
second route is valid away from equilibrium but seems
somewhat heuristic.

The IK derivation of (2) is based on the conservation
laws of hydrodynamics and is valid for inhomogeneous
nonequilibrium systems. However, the derivation of the
O,; expansion is unconvincing (it involves taking Taylor
series expansions of the differences between & functions)
and the practical calculation of the O;; expansion is com-
putationally daunting.

In this paper we present an alternative derivation of
the pressure tensor that, like the IK derivation, is based
on the mass and momentum continuity equations of hy-
drodynamics. However, unlike IK we avoid the expan-
sion of delta functions by carrying out much of the
derivation in reciprocal space.

We begin by adopting the usual definition of the micro-
scopic mass density, p(r,t)= 3, mo(r—r;(¢)). This
definition leads, using the mass continuity equation
dp /3t =—V-J, to the following equation for the momen-
tum density J(r,?):

Ja(r,t)EzmvaiS(r—ri(t)), a=x,y,z , (6)

where v,; is the laboratory velocity of particle i. Because
the mass continuity equation refers only to the diver-
gence of J and not to the momentum density itself, we
can add the curl of any vector field to J without any ob-
servable effect on the mass continuity equation. This is
an elementary example of a gauge transformation.

Since we shall be interested in planar interfaces with a
normal parallel to, say, the y axis, it is convenient to con-
sider a partial Fourier transform over the y coordinate,

Tolkyx,2)= [ 773 mvydr—r)e " dy
=3 mvgd(x —x,)8(z —z)e' 7 . (1)

If the fluid is assumed to be uniform in the x,z directions
we can average over them and write the transformed
momentum density as

1 ik,
Ja(ky)=7§mva,-e 7, (8)

where A is the magnitude of the area that has as its nor-
mal the y axis.

Now for any fluid, no matter how inhomogeneous and
no matter how far from equilibrium, the rate of change of
the momentum density is related to the divergence of the
pressure tensor P,

aJ(r,t)

ot

where u(r,?) is the streaming velocity of the fluid. This
equation says that momentum is conserved and in any re-
laxation process can only redistribute itself (i.e., no

=—V-[P(r,t)+p(r,)u(r,t)u(r,?)] , 9)
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sources or sinks). It also shows, as mentioned in the In-
troduction, that (like the momentum density) P is not
uniquely defined and that one can apply a gauge transfor-
mation without changing the rate of change of the
momentum density.

In k space the momentum continuity equation is

aJ (k)

ot
where we note here that f( ) denotes the Fourier trans-
form of the quantity in brackets. Substituting (8) into

(10) gives the potential contribution to the wave-vector-
dependent pressure tensor as

=ik, [Py, (k) + f(p(»)u,(»u,(y)N], (10

1 1 ai ik, y:
PU k )=— 2 —e
ay(ky) A4 4 ikye (11
while the kinetic contribution is

lk Vi
PK __2 1k
¥y

~Flpuqu (12)

In Ref. [10] we showed that Egs. (11) and (12) for the
wave-vector-dependent pressure tensor are Fourier trans-
forms of the Irving-Kirkwood expression (2), including
the infinite order expansion of the O;; operator. We will
now find simple, equivalent real-space expressions to (2).
These expressions also have the Irving-Kirkwood gauge,
and also include the full O;; operator expansion.

We make an inverse Fourier transform of the
configurational component of the pressure tensor (11), to
find that

U 1 zzz lkyy,. —ikyy
P,,(y)= Yy 2 e dk, . (13)
Utilizing the fact that
ifoo ex szy)dk =sgn(y) , (14)
Ty - ik
it is trivial to show
(y)——ZFmsgn(y, y) . (15)

If we let F;; be the force on particle i due to particle j, we
can symmetrlze this expression as

(y)———— szj Sgn(yz Sgn(yj’ _y)]
4A ZFatj[®(yz 0187 —.Vj)
—0(y;—y)®(y —y;)], (16)

where ® denotes the Heaviside step function.

Since F;;=—F, if y;,y; are both either smaller or
larger than y, both Heaviside products are zero and the
contribution to the pressure tensor is zero. If y; <y and
y; >y then the first product of step functions is zero while
the second is unity. If y, >y and y; <y then the second
product is zero while the first is unity. Thus (16) denotes
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the intermolecular “force across unit area.” Since the
sum is an unrestricted double sum every i, j pair is count-
ed twice; hence the extra factor of 2 in the denominator.
Finally we note that one can show the formal equivalence
of (16) with the configuration part of (2).

The kinetic part of the pressure tensor can be obtained
using similar methods. From (12), we see that

l V(ZI d

(y)—ﬁ d 2}‘, i, Eexp[zk —»1]

—pugl, . (17

If we interchange the order of integrating with respect to
k, and differentiating with respect to time we find

Ky 1 d pte . eXplik,(y;—y)]
o= g g Smvag [ dk, ik,
—puyu,

__%_gmvai%sgn(yi—y)—puauy . (18)
In obtaining the second of these equalities we have used
(14). In Eq. (18) we note that we only obtain nonzero
contributions to the kinetic component of the pressure
tensor when particles cross the plane. If particles remain
on either side of the plane d sgn(y, —y)/dt=0.

Applying chain rule differentiation to the sgn function,
we obtain

1 d
ng(y)fﬂzmvmvy, dysgn(yi*y)—puauy
1
=—;1—Emvmvy,6( —y)—puyu, . (19)
i

Equation (19) may be rewritten in terms of peculiar mo-
menta p; by use of the microscopic definitions of the mass
and momentum density,

1 D aiPyi
12

i

PE (»)= 8(y;—y) . (20)

We note now that (20) is the usual Irving-Kirkwood ex-
pression for the kinetic part of the pressure tensor.

If particle i crosses the plane at a set of times
{ti_m;i =1,...,N;m=1,2,...} and if we use the sign of
the y component of the momentum to tell whether the
crossing is from right to left or vice versa, (20) can be
written as

PE (y,0)= Epw(t sgn[y,(t)—y]

=% S 3 Pty 81,

ti,m i

—t)sgn[py,(t;,,)] .

(21)

The time-averaged kinetic component of the pressure
tensor can therefore be written as
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. 1
ng(y): Tll)nl 77— 2 Epai(ti,m )Sgn[pyi(t,"m )] .

0<ti’m <t i
(22)

From Egs. (16) and (22) we can easily see that the pres-
sure tensor can indeed be identified as that part of the
“force that acts across a unit area.” Our derivation does
not require any assumptions regarding when an interpar-
ticle force F; is “across” a plane. Neither does it involve
Taylor series expansions of differences of & functions.
Our derivation removes these difficulties and replaces
them with the well-defined mathematical procedure of
setting the gauge of both the pressure tensor and the
momentum density. We note that while the procedure of
working in k space greatly facilitates formal manipula-
tion of the mathematics, it does not remove the basic
conceptual problems associated with the O;; operator in
real space.

The difference between the full IK and the approxi-
mate IK1 expressions for the configurational components
of the pressure tensor may be seen more readily by noting
their instantaneous k-space expressions. The IK expres-
sion is given as
1_eik~r,.j

Pk (k)= T
y

. (23)

1
7 2mFy
ij

whereas the simpler IK1 approximation is

P (K)=—13 r,F e (24)
ij

As we shall see, Egs. (16) and (22) are quite useful in
numerical calculations of the pressure tensor. Although
they have rarely been used in the past they have two very
desirable properties: they incorporate the full Irving-
Kirkwood O;; operator expansion and they have high nu-
merical efficiency. The first of these properties means
that these expressions can be used in interfaces and nar-
row pores. The second property means that they produce
high accuracy results with comparatively little computa-
tional effort. We call the determination of the pressure
tensor by (16) and (22), the method of planes, MOP for
short.

B. Determination of the pressure tensor from the
continuity equation and molecular dynamics

Consider the momentum conservation equation for a
fluid in which each particle is subject to an external field
F, [10,11], and the fluid is subject to a pressure gradient
Vp,

du(r,t) _
dt

In this equation u(r,?) is the fluid streaming velocity at
position r and time ¢, p(r,t) the mass density at r and ¢,
n(r,t) the number density, and IT the viscous pressure
tensor (i.e., II=P—pl, where P is the pressure tensor
and p the hydrostatic pressure). It is the pressure gra-
dient which drives the flow. The actual value of the pres-

p(r,t) —V-II—Vp +n(r,t)F, . (25)

sure is not directly relevant. The pressure is only impor-
tant insofar as it determines the thermodynamic state of
the flowing fluid. The fluid therefore cannot distinguish
between a situation where the flow is driven by a pressure
gradient Vp or by an external field. If we choose an
external field such that

Vp=—n(r,0t)F, , (26)

we can study the flow properties of the system in the ab-
sence of an actual pressure gradient.

In computer simulations, the advantage of using an
external field to drive the flow rather than an actual pres-
sure gradient is that under a constant external field the
system can remain longitudinally homogeneous. Under
an actual pressure gradient this is not possible because in
compressible fluids pressure gradients imply density gra-
dients. In real experiments these density gradients are
usually so small that they are unobservable. However, in
order to achieve satisfactory signal-to-noise ratios, com-
puter simulations need to employ very large macroscopic
values for the pressure gradient. These large gradients
would lead to significant density variations over the
length of the simulation cell. Such variations would be
incompatible with periodic boundary conditions, which
are the desirable boundary conditions for computer simu-
lations because they minimize the effects of boundaries.

A possible objection to our external field method may
be that in (26), the pressure gradient that is equivalent to
the external field is not constant. Since the field is con-
stant but (particularly near the walls) the density is a
function of position, the equivalent pressure gradient is
not constant. This would seem to be at variance with the
standard text book description of Poiseuille flow. We
have two answers to this objection: First, in the weak-
field limit the fluid’s material properties are independent
of whether the field is constant or inversely proportional
to density. The results of these two different experiments
are processed differently, leading to identical material
properties in the weak-field limit. Second, in an actual
Poiseuille flow experiment where the walls are only a few
molecular diameters apart, it is not true that the pressure
gradient is necessarily independent of position across the
channel.

Consider a gravity-driven flow between closely spaced
parallel plates whose normals are perpendicular to the
direction in which gravity acts. In this case the equation
of motion is

du(r,t)

p(r,t) dr

=—V-Il+n(r,1)F, , (27)

where the magnitude of the external field F, is simply the
molecular mass of the fluid particles m multiplied by the
acceleration due to gravity g. In writing (27) we have as-
sumed that the vertical height of the plates is sufficiently
small that the difference in atmospheric hydrostatic pres-
sure between the top and bottom of the plates may be ig-
nored. Equation (27) shows that for gravity-driven flow in
a narrow slit pore, the effective pressure gradient appear-
ing in (26) is not constant across the slit, but rather is pro-
portional to the number density across the pore.
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In order to solve (27) we consider a three-dimensional
system where a fluid is sandwiched between two parallel
planar walls. We define the geometry such that the flow
is in the x direction, F, =iF,, with the walls separated by
a length L, in the y direction, as is shown in Fig. 1. If we
neglect the roughness of the walls, then periodic bound-
ary conditions ensure that our system is invariant in the
x,z directions, and II=II(y) and n(r)=rn(y). We first
examine the left-hand side of (27) and expand the total
derivative,

du(r,t) _ du(r,?)
dt at

At low Reynolds’ number we note oJu(r,t)/9t=0,
u, =u,(y), u,=u,=0, and hence du(r,?)/dt =0.

We now consider the right-hand side of Eq. (27) and
observe that again we are only interested in the x com-
ponents of the vector quantities. II is a second-rank

+u-Vu . (28)

tensor, and noting that II=II(y), we have
(V-II), =0Il,, /dy. Thus Eq. (27) reduces to
oIl
a;y =n(y)F, . (29)
The solution to (29) is
M,=4,0)+ 4, , (30)

where 4,(y)=F, fy_, Ay’ n(y’). A, is an arbitrary in-
¥y

tegration constant and [, is the effective length of the

channel accessible to the fluid, which is defined later in

Sec. III B.
Since n (y), the number density, can easily be obtained

O oo
Q.
eI

wall atoms

O I
O plane of closest approach

v O
O

~

O P y=0 plane

O O
OﬂL\ld atoms iF

m periodic image of wall

FIG. 1. Simulation geometry for planar Poiseuille flow. The
z axis is normal to the page.

from simulation, Eq. (30) gives us an independent meso-
scopic route to the shear stress. This route is termed
“mesoscopic” since it is independent of molecular con-
siderations. Unlike the IK, IK1, or MOP methods, this
mesoscopic method is valid for fluids in which the con-
stituent atoms are subject to many-body forces.

The constant 4 is arbitrary and shifts the entire II,,
profile by an additive constant. The simplest assumption
we can make in choosing this constant is that it is zero
when the strain rate is zero, II,,(y =0)=0, and therefore

_ 1 Iy/2
AO———l:f_ly/zA,(y)dy. 31)

The assumption that in the middle of the flow where the
strain rate is zero, the shear stress is also zero, sets the
gauge for the shear stress. We made exactly the same as-
sumption in choosing the gauge for our statistical
mechanical expressions for the pressure tensor [i.e., in go-
ing from (10) to (11) and (12)]. As already noted, this
gauge is identical to the Irving-Kirkwood gauge. We call
the determination of the pressure tensor by integrating
the momentum conservation equation the IMC method.

1. SIMULATION OF POISEUILLE FLOW

A. Equations of motion

Figure 1 describes the geometry of the system. We ran
simulations consisting of 558 fluid atoms and 54 wall
atoms. The interatomic potential function ¢(r) was the
Weeks-Chandler-Anderson (WCA) potential, [12]:
d(r)=4(r " 12—r~6)+1 for r <25 ¢(r)=0 for r >2!/6
(we have defined the WCA potential constants o and € to
be unity for simplicity; we also note that the atomic mass
has been set to unity). The walls are three atomic layers
thick (18 atoms per layer) and are fixed in place in an fcc
lattice structure by a combination of harmonic restoring
forces and a constraint mechanism. The simulation cell
is periodic in all three dimensions. There is only one
three-atom-thick wall per simulation cell. The second
wall is simply the periodic image of the first wall. This
periodicity also ensures that the total density of the sys-
tem remains constant.

We use a simple harmonic tethering potential to
confine wall atoms to the neighborhood of their nominat-
ed lattice sites. Following Powles, Murad, and Ravi [13]
the restoring potential applied to each wall atom is just

¢ =1K(r;— 1), (32)

where r,; is the equilibrium site of atom i, and K is a
spring constant. This tethering potential is additional to
the usual wall-wall and wall-fluid WCA interatomic in-
teractions.

Liem, Brown, and Clarke [14] used a similar simula-
tion arrangement in their boundary driven shear studies.
They also used the restoring potential of Powles, Murad,
and Ravi. (Unlike us, they did not use periodicity in the
y direction.)

However, they found that the fluid pressure was
sufficient to cause a slight increase in the wall separation.
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Furthermore, such an effect is expected to be dependent
on the average flow velocity of the fluid and hence is not
desirable because it means that the system volume and
average density do not remain constant during a simula-
tion. This is especially undesirable when studying small
pore widths, where even a slight increase in the volume
can have a significant effect on the density of the fluid. In
order to remove this difficulty we have developed a con-
straining mechanism, based on Gauss’s principle of least
constraint [10], which keeps the center of mass of each of
the atomic wall layers constant.

The constraint we impose is that the y coordinate of
the center of mass of each of the three wall layers, L;:
i =1,2,3, remains constant. We assume that each layer
contains N, particles and that there are therefore a total
of 3N, wall atoms.

Since Poiseuille flow involves a steady-state flow of
fluid, we require a method of removing viscous heat that
is produced in the fluid. Again we invoke Gauss’ princi-
ple of least constraint to maintain the walls at a constant
temperature. Thus excess heat will be removed from the
fluid by heat conduction from the fluid to the thermostat-
ed walls. The technique is well known [10], and we write
down only the final form of the thermostated equations of
motion.

The equations of motion for the wall particles are

I,=p;/m,
N (33)
pi=—K(ri—ry)+ 3 Fy—ap;—jA, , i€EL;.
j=1
The layer multipler kLI_ and the thermostat multiplier o
are given by

j Nw N
}\LJZYV_. S | —K(r—r;)+ 3 Fy |,
w €L, k=1
3 Ny
where 3 ¥ 1=3N,,
L;=1i€L,

(34)

3N, N
2 l —'K(r[—rei)+ 2 Fl‘j_jA’L‘.
j=1

ieL

a=

Since there is no streaming motion of the wall particles in
any direction, there is no difficulty in distinguishing be-
tween laboratory and peculiar momenta for the wall par-
ticles: the two momenta are identical.

The fluid particles obey Newton’s equations of motion,

3N,

S o

i€L

i'i =P /m ’
(35)
N .
pi= 2 F; +iF, ,
i=1
where F;; is the total WCA force on atom / due to both
fluid-fluid and fluid-wall interatomic interactions, and iF,
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is the external driving force described in Sec. II. It is un-
derstood that p; is the laboratory momentum of particle i
(i.e., the sum of the peculiar and streaming components).

B. General simulation consideraticns

The simulations were conducted using a fifth-order
Gear predictor-corrector scheme with an integration time
step of 7=0.001. The fluid atoms were initially arranged
in an fcc structure and the system allowed to reach
steady state before data were taken. Simulations were
carried out at two different number densities,
n=N/V=0.4181 and 0.8362. However, it is not clear
how to determine the average density of a fluid because
there is no unambiguous definition of the total volume
that is accessible to the fluid.

We denote the unit-cell dimensions as L,,L,,L,. The
values of Lx,Ly,LZ were 7.4217, 26.1269, 7.4217 for the
lower density and 5.2479, 26.5625, 5.2479 for the higher.
It is important to note that L, includes the fluid and wall
particles (see Fig. 1). For simplicity we make the y=0
plane midway between the walls. To judge what would
be the accessible width of the pore /, we examined the
fluid density profile as a function of y and measured the
width from those points where n (y) > 0.1, which we arbi-
trarily define as the “plane of closest approach.” Below
this value, n (y) drops to zero very rapidly. For both den-
sities this gave a value of /, =24.23.

Simulations for 7=0.8362 were carried out with
F,=0.05 and an optimal wali force constant of K=57.15
(see Liem, Brown, and Clarke [14]), while for 7=0.4181,
F,=0.01 and K=100. The value of K for the latter case,
though not optimal for heat transfer, was higher because
it was found that fluid atoms penetrated the walls rela-
tively frequently at this lower fluid density; hence the
walls needed to be “harder” to prevent this penetration.
However, one must be careful not to use too high a value
of K as this will make the equations of motion stiff and
also reduce heat transfer between fluid and wall atoms,
allowing the fluid to heat up. Both simulations were run
at a constant wall temperature of 0.722, and the wall den-
sities were 1.2549 and 0.8700 for the fluid densities of
0.8362 and 0.4181, respectively, where the wall density is
here defined as 3N, /(L,L,Ay,), and Ay, is the wall
thickness (1.5625 and 1.1269 for high and low densities,
respectively). Once steady state was achieved several
runs of 100000 time steps were undertaken for each den-
sity and averages taken of the quantities of interest.

Because of the streaming motion of the fluid, we must
distinguish between the peculiar and laboratory velocities
of the fluid particles. The kinetic component of any ther-
modynamic quantity, such as temperature or the kinetic
components of the pressure tensor, must be calculated us-
ing the peculiar velocities ¢; =v; —u(y;), where v; is the
laboratory velocity of particle i and u(y,) is the streaming
velocity at y;,. Here u(y)=iu(y) because the driving
force acts only in the x direction.

To determine the streaming velocity, at each time step
we fit a sixth-order symmetric polynomiali to the stream-
ing velocity profile within the simulation and subtract
this velocity from the laboratory velocity before calculat-
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ing any thermodynamic kinetic quantities. In the zero-
flow-rate limit, Navier-Stokes hydrodynamics predicts
that the velocity profile is a quadratic function of separa-
tion [15]. For small slit pores this is expected to be in-
correct because of steric effects near the walls.

The pressures calculated using our method of planes,
described in Sec. IT A, may be compared with those cal-
culated from the Irving-Kirkwood real-space expression,
(2), with O,»j=1 (i.e., IK1). We note that IK1 involves
summations over a volume V. To find pressures as a
function of y we thus need to divide the fluid region into
bins, each of which has a volume V,;,=L,L,Ay, where
L, ,L, are the lengths of the simulation box in the x and z
directions, respectively, and Ay is the width in the y
direction of each bin. The IK1 pressure tensor, as a func-
tion of y, measured in each bin will then be

1 . .
Ponp)=3— | 3 [vi—iu()]lv, =iz ()]
bin | iEbin
+1 3 nFl-, | (36)
ij
i Ebin

where now the sum over i includes only atoms that are
contained within the bin, and the sum over j includes all
possible atoms within or outside the bin.

We can also calculate other quantities as a function of
y by summing them over bins, such as the velocity, tem-
perature, and density. In this way we can build up
profiles of the various quantities of interest.

The viscosity can be calculated for each of the three
methods described in Secs. I and II (IK1, MOP, and
IMCQC), and is given by

(P, (»)

NS (37)

= 1' —_
)= Jim,
where y(y) is the y-dependent shear rate,

ou, (y)
y(y)= . (38)
dy

One can also determine an average viscosity (i.e., an
average viscosity over the entire fluid region) 7 directly
from continuum hydrodynamics. If one assumes the fluid
is a uniform continuum with a constant density 7 and
viscosity throughout the fluid (neither of which is strictly
true), then in our coordinate system the streaming veloci-
ty profile derived from the Navier-Stokes equation is

fiF, 12
u(y)=——= |y2—= (39)
27 4

Equation (39) with a second-order symmetric polynomial
u, (y)=c,p2+co (40)

gives for the continuum viscosity

AF,

2¢c,

¢, is obtained by fitting the simulated streaming velocity
profile with (40). We will call this estimate of viscosity
the continuum hydrodynamic viscosity, or CH for short.

Finally, for MOP it is a relatively simple matter to cal-
culate the configurational part of the pressure tensor
given by (16). One simply sums all F;; terms such that
atoms i and j are on opposite sides of the plane of in-
terest. The plane may be any x-z plane in any region of
the fluid, not just the wall-fluid interface. The kinetic
contributions, described by (22), also are straightforward
to compute; however, we note that any intersection of an
atom with a plane will occur in a time =<7. We interpo-
late the time at which this intersection occurs by a stan-
dard Newton-Raphson method.

IV. RESULTS

In order to verify the validity of the results we per-
formed a number of standard equilibrium molecular dy-
namics (EMD) simulations of the bulk WCA fluid at con-
stant temperature and volume (hence density), which cor-
responded to the appropriate average values of the tem-
perature and density measured for the Poiseuille flow
simulations. The standard EMD simulations were per-
formed on a system of 540 fluid particles with three-
dimensional periodicity. Table I displays the energy per
particle and the pressure for the Poiseuille flow simula-
tions at 7=0.8362 and 0.4181 (T=0.97 and 0.86, respec-
tively), and compares them with the energy per particle
and pressure at the same values of 7 and T for the EMD
bulk liquid simulations. Note that the pressure given for
the Poiseuille flow simulations is actually P,, averaged
over 260 planes (the number planes used in our simula-
tions) in the liquid. The plane separation was 0.09615.
As can be seen, the results for both densities are in good
agreement with each other and are within the range of er-
rors. The fact that the thermodynamic properties such as
internal energy and pressure are insensitive to the value

TABLE 1. Comparison of internal energy per particle, E /N,
and pressure for nonequilibrium planar Poiseuille flow and bulk
equilibrium molecular dynamics (EMD) at both densities used
for this work. The temperatures quoted for the Poiseuille flow
simulations are the overall average temperatures of the liquid
systems studied, while the temperatures of the bulk EMD simu-
lations were kept constant at the average temperatures of the
Poiseuille flow systems by using a Gaussian thermostat. Note
that for F,#0, P=P,,.

Quantity Poiseuille flow Equilibrium bulk
T=0.97, i=0.8362
E/N 2.34+0.02 2.361+0.002
P 7.524+0.04 7.514+0.009
F, 0.05 0
T=0.86, 7=0.4181
E/N 1.45+0.02 1.453+0.001
P 1.0240.01 1.015+0.003
F, 0.01 0
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, and P, calculated for the overall

Poiseuille flow system using the IK 1 approximation.

Quantity Poiseuille flow NEMD

T=0.97, 7=0.8362

P, 7.641+0.04

P, 7.761+0.04

P, 7.64+0.05
T=0.86, i =0.4181

P, 1.03+0.02

P, 1.061+0.02

P, 1.03+£0.02

of the external field implies that we are close enough to
equilibrium for the assumption of local thermodynamic
equilibrium to hold.

Table II shows the corresponding average values of
P, P,,, and P,, determined for the Poiseuille flow simu-
lations using IK1, where here we have summed kinetic
and potential components over the entire volume of the
liquid system. Not surprisingly the pressures for both
densities are slightly higher than the bulk simulations, be-
cause of the neglect of the O;; terms in evaluating IK1.

16.00 [ T T e I SRS

(a)1
14.00 — MoP .
K1 1

o wall

12.00

P
vy

10.00 1

8.00 -

6.00 [

4.00

-15.00 -10.00

090 F

The P,, components are also slightly higher than the cor-
responding P,, and P,, values.

For our system to be both mechanically stable and time
independent, P,, must be constant throughout the fluid.
Figure 2 shows a comparison of P,, as a function of y,
calculated by both MOP and IK1, where Ay=0.09615.
Two features of our MOP method stand out as
significant: first, P, is indeed seen to be constant across
the pore, and second, the relative accuracy of MOP is
much greater than that of IK1. Both sets of results were
obtained from exactly the same simulation data. The
only difference is in how those data are processed.

We can go some way towards understanding the supe-
rior statistical efficiency of our MOP method. In the
binned IK1 method the number of particles within each
bin is proportional to the bin volume. In order to resolve
the expected spatial variations of the pressure tensor as a
function of position within the channel one needs at least
ten bins or planes per particle diameter. As that volume
goes to zero the variance of the IK1 pressure diverges as
the reciprocal of the bin volume. On the other hand, in
the MOP method the pressure computed across each
plane is independent of the number or the spacing of oth-
er planes. This makes the MOP method very useful for
carrying out high-resolution studies of the pressure ten-
sor in confined geometries.
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FIG. 2. P, calculated by IK1 and MOP. (a) 7=0.8362; (b)

n=0.4181.
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The IK1 method shows anomalies in P, near the
walls, where P,, begins to oscillate rapidly and with large
amplitude. Again this is an artifact of neglecting to use
the O;; terms in the IK expression. The exclusion of
these terms fails to correctly account for a correlation be-
tween P, and the pair distribution function. This corre-
lation can be more easily seen in Figs. 3 and 4 by noting
that the rapid oscillations in P,, are observed in regions
where rapid oscillations in the density profile occur. We
note that because of spatial symmetry around y=0, the
data in both figures have been symmetrized to improve
the statistics.

Figure 2 also shows the value of P,, measured at the
left-hand wall of the system. This is defined simply as the
total y force per unit area, exerted on the wall atoms by
fluid particles on one side of the wall. Because of periodi-
city, the total force exerted on the wall by fluid particles
on both sides of the wall is zero. The wall estimate for
P,, must of course agree with P, anywhere within the
liquid, and once again we see that MOP verifies this quite
accurately.

Of somewhat greater interest is the P,, component of
the pressure tensor, because it is through this component
that we can calculate viscosity as a function of y
throughout the liquid. In this work the P,, components

1.60 [ 16.00
140 IR 14.00
1.20 ] 12.00
n [ P)’Y
1.00 [ 10.00
0.80 8.00
0.60 6.00
0.40 4.00
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0.55 1 1.40
oo F 1 130
_ 1120
0.45 ]
n 1 1.10 Py,
0.40 [ ]
1 1.00
0.35 0.90
0.30 I I D P I B BT e 0.80

-12.00-11.50 -11.00 -10.50 -10.00 -9.50 -9.00 -8.50 -8.00
y

FIG. 4. Correlation between P,, (IK1) and n(y). (a)
n=0.8362; (b) 7=0.4181. Both P,, and n(y) profiles have been
symmetrized.

are calculated by four independent methods: IK1, MOP,
via the integration of the momentum continuity equation
(30), referred to as the IMC method, and finally by com-
puting the shear stress on the wall, which is the total x
force per unit area, exerted on the all atoms by fluid par-
ticles in one side of the wall.

Figure 5 shows p,, calculated by IK1, MOP, and at
the walls for both densities used in our simulations. Once
again we see poor statistics and large oscillations in P,
near the walls for the IK1 method. MOP once again
displays significantly better statistics and is in good agree-
ment with P,, measured at the walls.

The IMC technique of calculating the pressure tensor
is also in good agreement with MOP to within 3%. This
is seen more readily in Fig. 6, where P,, is plotted for
both methods only for a distance of 3 atomic diameters
from the left-hand wall. In Fig. 6(a) we see that for both
the MOP and IMC techniques there are small oscillations
in P,, close to the wall. These do in fact extend towards
the center of the pore, but are two weak to be seen on the
scale of this figure. These oscillations are real effects.
They are not to be confused with the large oscillations
observed with the IK1 method, which are an anomalous
consequence of setting O;; =1.

In Fig. 7 we display the corresponding results for a
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FIG. 5. P,, calculated by IK1, MOP, and at the walls. (a)
7=0.8362; (b) 7=0.4181.
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pore width of 10. In this narrow pore the oscillations are
quite pronounced. We can also see that there is excellent
agreement between the shear stress computed using the
MOP and IMC techniques. That these two quite
different techniques show the same oscillations confirms
that the oscillations are not an artifact. This has impor-
tant consequences, as it implies that the viscosity near the
walls is not uniform (as is assumed in continuum hydro-
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FIG. 7. P,, calculated by IMC and MOP for a pore width of
7=0.84, T=091.

n=0.8362; (b) 7=0.4181.

dynamics) but oscillates as a function of y. The magni-
tude of the effect increases as the pore width decreases.
We are aware of at least one other group that has
theoretically predicted this oscillatory behavior in the
viscosity close to the walls [16], and this interesting
phenomenon is currently the subject of further investiga-
tion by both groups.

It is important to appreciate that use of the IK1 pro-
cedure will generate incorrect results in regions where the
density oscillates on atomic length scales. For instance,
Thompson and Robbins [17], in calculating the shear
stress for a Lennard-Jones fluid undergoing Couette flow,
find that it exhibits oscillations that are correlated with
the density oscillations. This they say cannot be under-
stood in terms of the macroscopic equations of hydro-

TABLE III. Second-order polynomial coefficients for the
streaming velocity profile. ¢, is the coefficient of the nth-order
term in the expansion. Since the velocity profile is symmetric
about y=0, only even order terms for the polynomial expan-
sions are considered.

n Co cy
0.8362 1.2066 —9.0142Xx 1073
0.4181 0.9010 —5.6106X 1072
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FIG. 9. Symmetrized viscosity profiles calculated by IMC.
(a) 7=0.8362; (b) 7=0.4181.

dynamics because these are derived assuming quantities
are averaged over scales larger than the mean free path.
This is certainly true for the case of the Navier-Stokes
equations, but applying the IMC technique to their
Couette flow geometry will yield a constant value for the
shear stress. Although they do remove these oscillations
by appropriate averaging, they do not indicate how they
calculated the shear stress. It is suspected that they used
the IK 1 expression, which would result in artificial oscil-
lations similar to those reported in this paper. Use of
IK1 would mask any genuine oscillations which might be
found in the shear stress, such as those reported in this
paper for Poiseuille flow.

From Eq. (37) we see that 7(y) is a function of P, (y)
and the strain rate y(y). The strain rate y(y) is found by
differentiating the observed velocity profile u, (y), which
itself is determined by binning the velocity data. Each
bin has a volume Vy;,. We then fit a polynomial to the
binned data. Continuum hydrodynamics predicts a sym-
metric second-order polynomial for the streaming veloci-
ty profile, as described by (39). However, this solution re-
lies upon the assumption of constant viscosity, which as
we have seen is not necessarily true for narrow pores.

We fit the velocity profile to a set of four symmetric
polynomials of second, fourth, sixth, and eighth order.
Perhaps surprisingly, it turns out that the best fit to u, (y)
is in fact given by a second-order symmetric polynomial.

Further work has confirmed this down to pore widths as
narrow as 5 atomic diameters. Figure 8 shows a compar-
ison of the binned velocity data and the best quadratic fit
to that data for the two systems. Once again we have
symmetrized the data to improve statistics. Table III
shows the coefficients of these polynomials.

In Fig. 9 we plot symmetrized viscosities calculated via
the IMC method for both densities. Caution needs to be
taken in interpreting the results near the center of the
pore. Because the strain rate is zero at the center of the
pore the signal-to-noise ratio must go to zero there and
the computed viscosity must diverge to plus or minus
infinity in this region.

In Fig. 9(a) we observe two interesting features of the
viscosity profile for 7 =0.8362. First, there is a gradual
increase in the viscosity from the center of the pore to the
walls. This trend in the viscosity mirrors that observed in
the density profile and is a consequence of the nonuni-
form temperature profile of the fluid, which is maximum
at the center of the pore and a minimum at the walls. To
check that this was the case, a separate equilibrium simu-
lation at constant fluid temperature was performed, and
it was seen that the average density (and hence average
viscosity) remained constant throughout the fluid.

Even more interesting in our results are the weak oscil-
lations in 7(y) near the walls. These oscillations are
strongest at the walls and grow progressively weaker to-
wards the center of the pore, and are the result of fluid
layering.

Figure 9(b) shows the corresponding viscosity profile
for the case of 7=0.4181. Again the viscosity near the
center of the pore is inaccurate for the reasons given
above. The statistical uncertainties are so large that we
cannot be certain whether or not there is a gradual in-
crease in 7(y) as we move towards the walls. At this
much lower density we might expect that this gradual
wall enhancement of the viscosity may be very weak.
This is expected since the density oscillations shown in
Fig. 3(b) are also weaker than those in the higher density
Fig. 3(a).

Finally, we can determine an effective continuum hy-
drodynamic viscosity by the application of (41). This
gives a value of 7=2.32 for 7=0.8362, and 7=0.37 for
n=0.4181.

V. CONCLUSIONS

In this paper we have presented an alternative statisti-
cal mechanical derivation of the pressure tensor. The
derivation avoids the mathematically awkward Taylor
series expansion of delta function differences that is used
in the original Irving-Kirkwood derivation. The deriva-
tion also avoids heuristic notions of the force “across” a
unit area. :

We show that as a direct consequence of the following
three equations,

pk, )= me'™ ™ | (42a)
J(k,t)=(ikik) -ikp(k,?) , (42b)
P(k,t)=(ikik) '-ikJ(k,1) , (42¢c)
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one obtains the standard IK expression for the pressure
tensor. We show that these equations also lead directly
to a pressure tensor that can be simply interpreted as the
force ‘“‘across” a unit area, and leads to our method of
planes for calculating the pressure tensor. Equations (42)
define the Irving-Kirkwood gauge for hydrodynamic den-
sities, J,P, ... .

The MOP includes an exact summation of the in-
famous O;; operator expansion and unlike the IK expres-
sion is simple to implement in practice. In numerical cal-
culations of the variation of the pressure tensor across a
slit pore, we find that MOP is more accurate and compu-
tationally efficient than the approximate IK1 method
(i.e., IK employing the approximation that O; =1).

For the special case of Poiseuille flow we compare the
MOP estimate for the pressure tensor with a mesoscopic
integration of the momentum continuity equation. In our
IMC method we resolve the ambiguity in the hydro-
dynamic definition of the pressure tensor through the as-
sumption that the shear stress is zero when the strain rate
is zero.

This can easily be shown to be equivalent to the IK
gauge when we observe that if the external field is added
to the equation for the pressure tensor and we assume the
flow is steady, we find that

P, (k,,0)=—ik,n (k,,0)F, /k} . (43)

[We note that although in this case (kk)™! does not exist,
(kk) !k is finite.] From (43) we can easily show

N
P (y,t)=—F, > sgn(y;—y)/24 . (44)

xy
i=1

This equation is the exact statistical mechanical analog of
the IMC equations (30) and (31). Thus the IMC gauge
and the IK gauge are identical for Poiseuille flow.

For simulated Poiseuille flow in a narrow slit pore the
IMC and MOP calculations of the shear stress exhibit re-
markable numerical agreement. This agreement is even
observed in very narrow slit pores where the shear stress
exhibits oscillations that reflect the effects of fluid atoms
packing against the walls.
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